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Abstract. Families of asymmetric periodic orbits, at the 2/1 resonance are com-
puted for different mass ratios. The existence of the asymmetric families depends
on the ratio of the planetary (or satellite) masses. As models we used the Io-Europa
system of the satellites of Jupiter for the case m1 > m2, the system HD82943 for the
new masses, for the case m1 = m2 and the same system HD82943 for the values of
the masses m1 < m2 given in previous work. In the case m1 ≥ m2 there is a family
of asymmetric orbits that bifurcates from a family of symmetric periodic orbits,
but there exist also an asymmetric family that is independent of the symmetric
families. In the case m1 < m2 all the asymmetric families are independent from the
symmetric families. In many cases the asymmetry, as measured by $2 −$1 and by
the mean anomaly M of the outer planet when the inner planet is at perihelion,
is very large. The stability of these asymmetric families has been studied and it is
found that there exist large regions in phase space where we have stable asymmetric
librations. It is also shown that the asymmetry is a stabilizing factor. A shift from
asymmetry to symmetry, other elements being the same, may destabilize the system.

1. Introduction

The study of extrasolar planetary systems is a new field of research
in dynamical astronomy, following the discovery of planetary systems
around distant stars. A complete catalogue of extrasolar planetary sys-
tems can be found in the web site http://www.obspm.fr/encycl/catalog.
html maintained by Jean Schneider. There are 136 confirmed extrasolar
planetary systems at the time of writing this paper, with 14 of them
having two or more planets. In some planetary systems the two planets
do not come close to each other. In such a case the ratio of the plan-
etary periods is not important for the stability of the system. There
are however planetary systems, many of them with large eccentricities,
where the two planetary orbits are close to each other, and may even
intersect, but evidently they are stable. Many of these systems are close
to a mean motion resonance and, as we shall see in the following, this
provides a phase protection mechanism, which results to the avoidance
of close encounters and thus the system is stable. We remark also
that periodic motion of the planetary system, in the sense that the
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relative configuration is repeated in space, implies exact mean motion
resonance.

There are several studies on the dynamics of extrasolar planetary
systems. One field of research is to study the stability of a particular
extrasolar system, considering all possible configurations at a certain
resonance (Ford et al., 2001; Gozdziewski et al., 2002; Kinoshita and
Nakai, 2001a,b; Kiseleva et al., 2002; Laughlin and Chambers, 2001;
Lissauer and Rivera, 2001; Malhotra, 2002a,b; Murray et al., 2001;
Peale and Lee, 2002; Rivera and Lissauer, 2001; Ferraz-Mello et al.
2005). A different field of research refers to the question of how the
observed extrasolar planetary systems evolved to their present form.
It is generally believed that the observed planetary systems, many of
them having large eccentricities, were not formed in their present form,
but were trapped in the present form following a migration process. Lee
(2004) studied the migration of a planetary system, starting with cir-
cular planetary orbits, and considering planet-disk interaction, forcing
the outer planet to migrate at a rate of the form ȧ2/a2 ∝ T−1

2 , where a2

is the semimajor axis and T2 the period of the outer planet. A similar
study is made by Beaugé et al. (2003). The migration process was
also studied by Ferraz-Mello et al. (2003) who considered the action
of anti-dissipative tidal forces and integrated the exact equations of
motion. In all these cases it was shown that the system is trapped to a
resonant configuration, which, as we shall show in this paper, is close
to a symmetric or asymmetric periodic orbit of the planetary system,
in a rotating frame. This shows the importance of the periodic orbits
in the study of the dynamics of a planetary system.

A third field of research is to study the dynamics of a resonant
planetary system, as it is at its present configuration. The planetary
system is considered as a dynamical system and the topology of its
phase space is studied, with the aim to find what are the regions where
stable motion can be found, or what are the regions where the motion
is chaotic and consequently no planetary system could exist. As it will
be made clear in the following, it is the exact periodic orbits that
determine the topology of the phase space. The study of periodic orbits
has been made by Beaugé et al. (2003) for the 2/1 and 3/1 resonance,
by finding the fixed points of an averaged Hamiltonian. These fixed
points correspond to symmetric and asymmetric periodic orbits in a
rotating frame. A similar study was made by Hadjidemetriou (2002),
Hadjidemetriou and Psychoyos (2003), Psychoyos and Hadjidemetriou
(2005a,b). They found families of symmetric resonant periodic orbits
for several resonant cases.

In many cases, the motion of a planetary system in resonance is
symmetric with respect to the line of apsides : The lines of apsides of
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the two planetary orbits coincide and the perihelia are either aligned,
∆$ = 0◦, or antialigned, ∆$ = 180◦, where ∆$ = $2−$1. Moreover,
there exists a moment that when one planet is at perihelion or aphelion,
the other planet is, at that moment, also in perihelion or aphelion.

Apart from the symmetric resonant periodic orbits, there exist res-
onant configurations where the planetary orbits are asymmetric, which
means that the angle ∆$ of the lines of apsides of the two planets is not
equal to 0◦ or 180◦. Together with this geometric asymmetry, we have
in this case a dynamic asymmetry, in the sense that when one planet
is at perihelion (or aphelion) the second planet, at that moment, is in
a position different from perihelion or aphelion.

In the present study we propose a new approach to detect stable
planetary motion. We do not focus our attention to a particular plan-
etary system (although we shall apply the results to specific extrasolar
systems), but we present the main properties of the phase space of
a planetary system close to resonance, for three different mass ratios:
m1/m2 < 1, m1/m2 = 1 and m1/m2 > 1. The 2/1 resonance will be
analyzed here, but this method of work can be extended to all other
main resonances. A systematic method is presented, based on periodic
orbits, to find regions of the phase space where stable motion exists
and consequently a real planetary system could be found in nature.
A study on the dynamics, based on families of periodic orbits, was
made in Hadjidemetriou (2002), Hadjidemetriou and Psychoyos (2003)
and Psychoyos and Hadjidemetriou (2005a), for the 2/1, 3/2 and 5/2
resonant systems. In these papers, all the periodic orbits are symmetric
with respect to the common line of apsides of the planetary orbits. In
the present paper we extend the study of the dynamics at the 2/1
resonance, by including asymmetric resonant (periodic) motion. This
means that the lines of apsides of the two planetary orbits are no longer
aligned or antialigned.

Although the planetary masses are in most cases small, compared
to the mass of the star, the gravitational interaction between the two
planets cannot be neglected, and in some cases it even dominates. For
this reason, we used the model of the general three-body problem. The
exact equations of motion were used in the computations.

It is known that the evolution of any dynamical system in general,
and of a planetary system in particular, depends on the topology of
its phase space. We remark at this point that the topology of the
phase space is shaped by the position and the stability character of
the periodic orbits (or, equivalently, the fixed points of the Poincaré
map on a surface of section). Since around a stable periodic orbit there
exists an island where we have stable librations, the knowledge of the
position of the stable periodic orbits provides important information
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Figure 1. The rotating frame xOy. (a) asymmetric orbit and (b) Symmetric orbit.

on where an extrasolar planetary system could be found. In fact, in
this way, we obtain a chart of the whole phase space which shows all
the possible positions where a 2/1 resonant planetary system could
exist. These are the configurations to which a planetary system could
be trapped, if in the past it had followed a migration process (Beaugé
et al. 2003; Ferraz-Mello et al., 2003; Lee and Peale 2003; Lee, 2004).
This study is also useful, because there are uncertainties in the orbital
elements of the observed planetary systems, and we can at least know
if these elements could, in principle, correspond to a stable system.

The above remarks make clear the importance of the periodic orbits
in the study of the dynamics of a planetary system. Although periodic
orbits form a subset of measure zero in the complete set of all possible
motions, they are the “framework” of the phase space.

In what follows we shall call the main attracting body the sun and
the two small bodies the planets, P1, P2, with the index 1 referring to
the inner planet and the index 2 to the outer planet. In the present
study only planar motion will be considered, so we shall refer to the
angle between the lines of apsides of P1 and P2 as ∆$ = $2 −$1.

2. Periodic orbits of the planetary problem

2.1. General remarks

As we mentioned above, the dynamical model that we use in the study
of a planetary system is the general three-body problem. The center of
mass of the planetary system is considered as fixed in an inertial frame,
and the study is made in a non-uniformly rotating frame of reference
xOy, whose x-axis is the line sun - P1, the origin O is the center of mass
of these two bodies and the y-axis is perpendicular to the x-axis (figure
1a). In this rotating frame P1 moves on the x-axis and P2 in the xOy
plane. The total mass and the gravitational constant are normalized to
unit.
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The coordinates are the position x1 of P1, the position x2, y2 of
P2 and the angle θ between the x-axis and a fixed direction in the
inertial frame. The coordinates x1, x2, y2, define the position of the
system in the rotating frame and the angle θ defines the orientation
of the rotating frame. This is a system of four degrees of freedom,
but it turns out that the angle θ is ignorable, and consequently the
angular momentum integral exists, L = ∂L/∂θ̇=constant, where L is
the Lagrangian of the system. So the study is reduced to a system of
three degrees of freedom, in the rotating frame only, and the angular
momentum L is a fixed parameter (Hadjidemetriou, 1975).

Monoparametric families of periodic orbits exist in this rotating
frame (Hadjidemetriou, 1976). The periodic orbits are either symmet-
ric, with respect to the rotating x-axis, or asymmetric. In a symmetric
periodic orbit of period T the periodicity conditions are

ẋ1(0) = ẋ1(T/2) = 0, ẋ2(0) = ẋ2(T/2) = 0, y2(0) = y2(T/2) = 0.

The symmetry implies that ∆$ is equal to 0 or π and there exists a
moment that when one planet is at perihelion (or aphelion) the other
planet is also at perihelion or aphelion.

For an asymmetric periodic orbit the periodicity conditions are

x1(T ) = x1(0), ẋ1(T ) = ẋ1(0) 6= 0,

x2(T ) = x2(0), ẋ2(T ) = ẋ2(0), ẏ2(0) = ẏ2(T ),

provided that y2(0) = y2(T ) = 0 and T is the period. For these
initial conditions the two planets are in conjunction. The above ini-
tial conditions imply that the planet P2 starts from the x-axis (non-
perpendicularly) and the planet P1 is not at rest on the x-axis, and
after a time t = T , when P2 crosses again the x-axis, the planets P1,P2

have the same initial position and velocity as at t = 0.
An equivalent set of initial conditions for an asymmetric periodic

orbit is

x1(T ) = x1(0), x2(T ) = x2(0), y2(T ) = y2(0) 6= 0,

ẋ2(T ) = ẋ2(0), ẏ2(0) = ẏ2(T ),

provided that ẋ1(T ) = ẋ1(0) = 0. This implies that we start, at t = 0,
at the moment when P1 has zero velocity on the x-axis, which means
that P1 is either at perihelion or at aphelion, (P2 is not on the x-axis),
and after a time t = T , when P1 has again zero velocity on the x-
axis, the planets P1,P2 have the same initial position and velocity as
at t = 0.
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The first or the second set of periodicity conditions is solved using
differential approximations. In practice, this is realized by a Newton-
Raphson shooting algorithm. We performed the integration of the dif-
ferential equations of motion of the planetary system in the inertial
frame (where the center of mass is fixed) and the reduction to three
degrees of freedom, in the rotating frame, was made by a coordinate
transformation. The method of integration was based on Taylor se-
ries expansion and/or on a control step Bulirsch-Stoer algorithm with
accuracy 10−14. In many cases the convergence of the algorithm to a
periodic solution with a prescribed accuracy depends on the particular
choice of the set of initial conditions.

Note that periodicity in the rotating frame means that the relative
configuration of the three bodies is repeated after one period. The
system is not, in general, periodic in the inertial frame. The orbits of
the two planets (nearly Keplerian ellipses) in the inertial frame precess
with a small angular velocity, which depends on the particular periodic
orbit.

2.2. Circular or elliptic, resonant, planetary orbits

In the planetary problem, with small planetary masses, the orbits of the
two planets are nearly Keplerian, due to their weak gravitational inter-
action, although in some resonant cases the deviations from Keplerian
motion are important.

There are two types of periodic orbits, circular and resonant elliptic.
The unperturbed motion with zero masses and zero eccentricities of
both planets is periodic in the rotating frame for any value of the
radii. If we switch on the masses, this periodic orbit is continued as
a periodic orbit in the rotating frame, defined in figure 1. These are
the circular orbits mentioned above. The continuation is possible for
all values of the ratio of the semimajor axes (radii), except for those
values corresponding to the resonances 2/1, 3/2, 4/3,..., where gaps
appear (e.g. see figure 2b)

The unperturbed motion with zero masses and nonzero eccentricities
of the two planets is periodic, for all possible orientations of the apsidal
lines of the two planetary Keplerian orbits, provided that they are in
mean motion resonance. If we switch on the masses, then out of the
infinite set of resonant periodic orbits, only a finite number survives
according to the Poincaré-Birkhoff theorem. The orbits that survive
(usually one stable and one unstable, see Hadjidemetriou (2005)) may
be symmetric with respect to the rotating x-axis (this is the most com-
mon case), but they can also be asymmetric. The symmetric 2/1, 3/2,..
resonant families “bifurcate” from the circular family, at the point of
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Table I. All possible symmetric phases at t = 0 and t = T/2 for the 2/1 resonance

Type 1: P2(ap) - sun - P1(per) → sun - P1(per) - P2(per)

Type 2: P2(per) - sun - P1(ap) → sun - P1(ap) - P2(ap)

Type 3: P2(per) - sun - P1(per) → sun - P1(per) - P2(ap)

Type 4: P2(ap) - sun - P1(ap) → sun - P1(ap) - P2(per)

the gap mentioned before (see figure 2b). We do have however families
of symmetric periodic orbits that do not bifurcate from the circular
family. The existence of these families depends on the ratio m1/m2

of the planetary masses, and the family may disappear if this ratio is
changed. The bifurcations of asymmetric families will be discussed in
details through the following sections.

We remark that the system of differential equations that describe
the motion of the three bodies in the rotating frame are invariant under
the transformation

x1 → x1, x2 → x2, y2 → −y2, t→ −t.

This means that to each asymmetric periodic orbit there exists also
its mirror image. Consequently, the families of asymmetric periodic
orbits are always in equivalent pairs. Evidently, the semimajor axis
and the eccentricity of the corresponding periodic orbits along these
two equivalent families are identical while the mean (or true) anomalies
and the arguments of pericenter are of opposite sign.

3. Families of periodic orbits for different mass ratios

3.1. The different symmetric configurations

For any resonant symmetric periodic orbit there exist eight different
configurations, for all possible combinations: perihelia of the two plan-
ets in the same direction or in opposite directions and position of each
planet at perihelion or at aphelion. These eight configurations are not
independent from each other, but are equivalent in pairs, depending
on the particular resonance. By “equivalence” we mean that if we
start from a certain configuration at t = 0, we come to the equivalent
configuration at t = T/2. It is simple geometry to verify that for the
2/1 resonance we have the equivalent pairs shown in Table 1. Type 1
and type 2 correspond to alignment of perihelia ($2 = $1), and type 3
and type 4 to antialignment of perihelia, ($2 = $1 + π).
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3.2. Families of periodic orbits at the 2/1 resonance: Basic
properties

We present here some basic properties of the families of periodic orbits
at the 2/1 resonance. Such families have been computed by Psychoyos
and Hadjidemetriou (2005a), for the masses of HD 82943, Gliese 876,
HD 160691 and also for the inverse masses of HD 82943. Beaugé et al.
(2003) determined 2/1 resonant periodic orbits as equilibrium points of
an averaged Hamiltonian and for several mass ratios. There is a good
agreement between his results and the results of the present paper,
obtained by integrating the exact equations of motion. There exist two
resonant families of symmetric periodic orbits at the 2/1 resonance,
family 1, which starts as type 3 and ends as type 1, and family 2,
corresponding to type 4. These families bifurcate from the circular non-
resonant family, at the points where a gap develops at this resonance.
When m1 ≤ m2 there is also a third family, family 3, which starts as
type 2 and ends as type 3. The type of periodic orbits changes when the
eccentricity of P1 crosses zero, while the eccentricity of P2 stays always
at high values. The family 3 is independent of the circular families. For
m1/m2 > 1 this third family disappears. The mass ratio m1/m2 plays
an important role for the stability. For m1/m2 < 0.97 the whole family
1 is stable, but when m1/m2 > 0.97, an unstable region appears on this
family. The unstable region increases as the ratio m1/m2 increases.

In the case m1/m2 > 0.97, where an unstable region appears on
family 1, we have a bifurcation of a new family of periodic orbits, from
the critical points at both ends of this unstable region. As we shall see
in the following, these two families are families of asymmetric periodic
orbits, at the 2/1 resonance, and in fact coincide to a single family:
This asymmetric family starts from one end of the unstable region and
ends to the other end. In addition to this asymmetric family, there exist
also families of asymmetric periodic orbits, that are independent of the
families of symmetric periodic orbits.

In the case m1/m2 < 0.97 there is not any unstable region on family
1, so the asymmetric family that we have for m1/m2 > 0.97 no longer
exists (In Beauge et al. (2003) is also indicated that the unstable region
survives for m2 slightly larger than m1). There are however families of
asymmetric periodic orbits in this case, which are independent of the
families of symmetric periodic orbits.

In sections 5-7 we present families of asymmetric periodic orbits for
three different cases: m1/m2 > 1, m1/m2 = 1 and m1/m2 < 1. For
the first case we studied the system Io-Europa, and for the second and
third case the HD 82942 extrasolar planetary system. These are typical
cases, and the results are the same for all other systems, with different
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values of m1 and m2. What is important is the ratio of the masses
and not their absolute values. Lee (2004) has extended the study of
resonant motion to values of m1/m2 from 0.1 up to 10, much larger
than the values used in the present study.

4. Families of symmetric periodic orbits for m1 >m2.
Jupiter-Io-Europa mass ratio

We start with the system Io-Europa and we present families of resonant
2/1 periodic orbits, in the rotating frame, for the masses

m1 = 4.684× 10−5m0 , m2 = 2.523× 10−5m0.

These are the masses corresponding to the satellites Io and Europa of
Jupiter, where m0 is the mass of Jupiter. The eccentricities are very
small, e1 = 0.004, e2 = 0.009. A study of planetary or satellite systems
with these masses was made by Ferraz-Mello et.al (2003). The results of
this section are applicable also to all planetary systems wherem1 > m2.

In the present section we start with the symmetric families and in
section 5 we continue with the asymmetric families.

4.1. Io-Europa system: symmetric periodic orbits

In our computations that follow, we used the value of angular momen-
tum equal to L = 0.000066700, for all the orbits of all the families. All
the periodic orbits that we present in this section are symmetric with
respect to the x-axis of the rotating frame. This means that a family
can be presented as a continuous curve in the space of initial conditions
x1(0), x2(0) and ẏ2(0). In order to make more evident the role played
by the elements of the orbit, we present the families of periodic orbits
in the eccentricity space e1 e2 also.

We found two families of 2/1 resonant periodic orbits, family 1 and
family 2. These families are shown in figure 2a (projection on the
x1 x2 plane). To show better the gap on the circular family at the
2/1 resonance, we present in figure 2b a detail of figure 2a close to
the gap. The 2/1 gap is clearly seen. Family 1 starts as a family of
type 3 (antialigned perihelia, ∆$ = π, see table I). This holds up to
e1 ≈ 0.097 when e2 = 0. For greater values of e1 family 1 corresponds
to the phase of type 1, which means that the lines of apsides are aligned,
∆$ = 0. This can be easily explained geometrically: The eccentricity
e2 of P2 at first increases, while the planet is at aphelion, and then
decreases, passing from zero value and then increases again. At the
transition of e2 from the zero value we have a shift from aphelion to

Asymmetric1.tex; 8/08/2005; 12:32; p.9



10 G. Voyatzis, J.D. Hadjidemetriou

-3.0 -2.0 -1.0x1

0.0

2.0

4.0

6.0

x2

circular
(non resonant)

circular

2/1 resonant

2/1 resonant

2/1
GAP3

2/1 resonance

close collision orbits
6

U

S

S
US

family 1

family 2

(a)

-1.20 -1.16 -1.12x1

0.8

0.9

1.0

1.1

1.2

x2

circular

2/1 GAP3

circular

2/1 resonant

2/1 resonant

(b)

Figure 2. (a) 2/1 resonant families. Projection on the x1x2 plane of initial conditions.
The thick line denotes the unstable part of the family. (b) Detail of the gap at the
2/1 resonance.

perihelion. Family 2 corresponds to the phase of type 4, which means
that the lines of apsides are antialigned, ∆$ = π.

In figure 3a, we present the families 1 and 2 in the space of the
eccentricities e1 and e2 of the two planets. We used the convention
ei > 0 for position of the corresponding planet at aphelion and ei < 0
for position at perihelion. The linear stability along the two families is
indicated. A thin curve indicates stability and a thick curve indicates
instability. An unstable region appears on the family 1, because it is
m1/m2 > 0.97, as we mentioned in section 3.2. The family 2 starts as
unstable, but after the collision area, the family is stable. Note that
in this stable segment of the family 2 the planetary eccentricities are
larger than the eccentricities in the unstable part of the family.

Along a 2/1 resonant family, the ratio n1/n2, where ni denotes the
the mean motion of the planet Pi (i = 1, 2), is almost equal to 2, but the
eccentricities of the planets increase, starting from zero values. Along
the family 2 a collision orbit appears, at the eccentricities e1 = 0.12 and
e2 = 0.27. At this region there is a gap along the family 2, as shown
in figures 2a, 3a. We note that along the family 1 the eccentricity e1 of
P1 is larger than the eccentricity e2 of P2. The opposite is true along
the family 2.

In Figure 3b we present a small section of the family 1, close to
the gap, which corresponds to the type 3 antialignment configuration
(lower left section, e1 < 0, e2 < 0) and also the position of the Io-Europa
system, for all possible configurations. The real Io-Europa system is at
the type 3 antialignment configuration and we note that its position is
not exactly on the family 1 of periodic orbits. This is due to the fact
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that the Io-Europa system is a subsystem to the Io-Europa-Ganymede
system, which is in the Laplace resonance 1:2:4. To take into account
the effect of Ganymede on the Io-Europa system, one must consider
periodic orbits or the general four-body problem, for the masses of
the Sun-Io-Europa-Ganymede system, at the Laplace resonance. This
has been done by Hadjidemetriou and Michalodimitrakis (1981), who
computed four families of periodic orbits at the exact Laplace reso-
nance 1:2:4. All these families are resonant families along which the
eccentricities increase, starting with very small values. One of these
families contains a periodic orbit which is very close to the real Io-
Europa-Ganymede system, i.e. it has the correct configuration and the
correct eccentricities (Figure 2 of the above paper). It is worth noting
that this family is the only stable family among the above mentioned
four families.

To have a better understanding of the families of resonant periodic
orbits mentioned above, we show in figures 4 and 5 five typical periodic
orbits. Their position on the two families is shown in figure 3a. The
orbits are presented in the inertial frame, for a short time interval, of
the order of the period. (For a longer time, the orbits would precess).
The position of the planets at t = 0 and t = T/2 is shown on their
corresponding orbits in the figures 4, 5. Note that in the periodic orbits
of the family 2, after the collision orbit, the planetary orbits intersect,
but due to a phase protection mechanism at this phase, because of the
resonance, the planets do not come close to each other (figure 5b) and
the system is stable. A 2/1 resonant stable orbit close to the system
HD82943 where the two planetary orbits intersect, is given by Ji et.al
(2004) and also by Hadjidemetriou and Psychoyos (2003). We remark
that this refers to the old fit given by Israelinian et al. (2001).

4.2. Stability of the symmetric orbits

The stability of the periodic orbits along the families was investigated
by computing the linear stability. The linear stability analysis showed
that a large part of the family 1, where e1 > e2, is unstable, and
the stable orbits correspond either to very small or to relatively large
planetary eccentricities. On the family 2 a collision orbit appears. The
family 2 is unstable from the beginning (zero eccentricities) up to the
collision orbit. After the collision, where the eccentricities become quite
large, the orbits are stable (figure 2a and 3). In this latter case, the
planetary orbits intersect, but the motion is stable, because of the
phase protection mechanism mentioned above. The nonlinear stability
of the symmetric periodic orbits has been studied by Hadjidemetriou
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and Psychoyos (2003), and Psychoyos and Hadjidemetriou (2005a) and
we shall not repeat it here.

5. Families of asymmetric periodic orbits, m1 >m2.
Jupiter-Io-Europa mass ratio

5.1. The asymmetric family A1, which bifurcates from the
symmetric family 1

We present in this section families of asymmetric periodic orbits for
the masses of the Io-Europa system, given in section 4. It is known
that if in a family of periodic orbits there exists a critical point, as far
as the stability is concerned, (a point where we have a transition from
stability to instability, or vice versa, in this family), then a new family of
periodic orbits bifurcates from this point. In section 4.1 we found that
along the family 1 of symmetric periodic orbits there exists an unstable
region (figure 3a), and consequently, from each of the two critical points
at the two ends of this unstable region we have a bifurcation of a
family of periodic orbits. These families are also resonant, at the 2/1
resonance. It turned out that the two families that bifurcate from the
above two critical points are families of asymmetric periodic orbits.
These two families meet and form one single family. This single family
of asymmetric periodic orbits starts from one critical point, B11 and
ends to the other critical point, B12, as it is shown in figure 6, in the
space e1 e2. We call this asymmetric family, family A1. In this figure the
eccentricities are considered in all cases positive. The two symmetric
families, family 1 and family 2, are also shown (with dashed lines).

The family A1 is linearly stable and the corresponding orbits of the
planets P1 and P2 in the inertial frame do not intersect. The family A1

has been found also by Beaugé et al. (2003), as a family of fixed points,
and by Ferraz-Mello et al. (2003) and Lee (2004), as a capture domain
of a migration process.

The family A1 bifurcates from the family 1 of symmetric periodic
orbits, along which the lines of apsides are aligned, ∆$ = $2−$1 = 0
(for e1 > 0.097). As a consequence, the angle ∆$ starts with zero value
on the family A1 and ends with zero value also, at the other end, but
along the family ∆$ increases up to 104◦, as shown in figure 7a. This
angle is a measure of the geometric asymmetry of a periodic orbit. The
dynamic asymmetry along the family A1 is measured by the value of
the mean anomaly M of the second planet P2 when the first planet P1

is at perihelion (i.e. M = M2 when M1 = 0), and is given in figure
7c. We remark that since the orbits are 2/1 resonant, i.e. during one
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Figure 6. Io-Europa system. The 2/1 resonant families of periodic orbits in the
eccentricity space. The symmetric families 1,2 of the figure 3a are shown by dashed
lines and the asymmetric ones by solid lines. All eccentricities are now considered
positive. Stability is indicated by thin line and instability by thick line. Two asym-
metric families, family A1 and family A2, are shown. The position of the three
orbits O1 on A1 and O2, O3 on A2, which are discussed in the text, is indicated.
The notation “c.o.” denotes a collision orbit.

period the planet P1 passes twice from its pericenter, there exist two
values of M , which differ by about 180◦. In the corresponding figures
of the paper only one value of M is presented.

A typical asymmetric periodic orbit on this family, particularly the
orbit O1 indicated in figures 6 and 7a,c, is shown in figure 8 (first
column). It is given both in the rotating frame, where it is exactly
periodic, and in the inertial frame. In the latter case, the orbit is given
for a time interval of one period, because the system is not periodic in
the inertial frame and the planetary orbits precess slowly. Note that
the lines of apsides of the two planetary orbits are not aligned.
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is an example of an asymmetric periodic orbit where we have geometric symmetry,
but dynamic asymmetry.
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5.2. The asymmetric family A2

In addition to the asymmetric family A1, there exists also one more
family of asymmetric periodic orbits, family A2, which is independent
of the symmetric families mentioned in section 4.

The graph of the family A2 in the space e1 e2, as shown in figure 6,
is quite complicated. Neither of the generalized variables of the system
nor any of the orbital elements of the orbits vary monotonically along
the family. There are two stable regions on this family, and the critical
points, where we have a change of the stability, are denoted by the
points B2i (i = 1, .., 4). Along the family A2 the corresponding orbits
of the planets P1 and P2 intersect in the inertial frame except for the
family segment 0.5 < e1 < 0.7 located between the critical points B22

and B23.
The variation of the angle ∆$, which is a measure of the geometric

asymmetry, is also quite complicated, as shown in figure 7b. ∆$ does
not vary monotonically along the family and takes values in a wide
range (66◦ < ∆$ < 360◦). The dynamic asymmetry along the family
A2 is measured by the value of the mean anomaly M , defined in section
5.1, and is given in figure 7d. In figure 8 (second and third column) we
present two typical asymmetric periodic orbits, orbit O2 and orbit O3,
both in the rotating and the inertial frame. Note that in orbit O3 it is
∆$ = 180◦, but M is not equal to 0◦ or 180◦. This means that we have
geometric symmetry, but dynamic asymmetry. Note also that along the
family A2 the value of M tends to 180◦ as e1 → 1.

The approximation, followed by Lee (2004) indicates the existence
of family A2. It has been shown that the stable segment from B23 to
B24 can be reached by differential migration for m1/m2 & 2.75. For
more details on the migration process see Lee (2004) and Ferraz-Mello
et al. (2003).

We remark that, as mentioned in section 2, to each of the two
asymmetric families presented above, there correspond two equivalent
asymmetric families, whose orbits are the mirror image of the for-
mer families. We remind that this is due to the system’s fundamental
symmetry mentioned in section 2.1. The semimajor axes and the ec-
centricities of the corresponding periodic orbits are identical, but the
mean (or true) anomalies and the arguments of pericenter are opposite
in sign.
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6. Families of asymmetric periodic orbits, m1 =m2.
HD82943 (new values) mass ratio

In this section we present families of asymmetric periodic orbits, for
the masses of the extrasolar planetary system HD 82943, using the new
elements. New values for the system HD 82943 were given recently by
Mayor et al. (2004). The orbital elements and the values of the masses
are quite different from those published before. The new values are:
m0 = 1.05 MSUN , m1 sin i = 1.85 MJ, m2 sin i = 1.84 MJ, a1 = 0.75
AU, a2 = 1.18 AU, T1 = 219.4 ± 0.2 d, T2 = 435.1 ± 1.4 d, e1 =
0.38± 0.01, e2 = 0.18± 0.04, $1 = 124± 3, $2 = 237± 13. We remark
that Ferraz-Mello et al. (2005) showed that this particular system with
the above elements is unstable.

The families of symmetric periodic orbits for the above masses are
given in figure 9 (dashed lines). Note that family 1 and family 2 are
similar to the corresponding families of the Io-Europa system, given
in figure 6, but now the unstable region on the symmetric family 1
is smaller, because m1 = m2. For m1/m2 < 0.97 this unstable region
disappears. A third family of symmetric periodic orbits, family 3, also
appears in this case. This family is unstable. The symmetric families
1 and 2 have been studied in Psychoyos and Hadjidemetriou, (2005a),
and in the following we shall focus our attention on the asymmetric
families.

Due to the smallness of the unstable region on family 1, the asym-
metric family A1 that bifurcates from this unstable region, is much
smaller. However, the variation of ∆$ and M is rather significant
(figures 10a,c). Their extremum is found at e1 = 0.32 where ∆$ = 40◦

and M = 34◦ (or M = 326◦).
Similarly to the Io-Europa system, a second family, family A2, exists.

This family is independent of the symmetric families. All the symmetric
and asymmetric families are shown in figure 9, in the e1 e2 space. The
linearly stable regions are indicated by a thin line and the unstable
regions by a thick line. The points where the stability type changes
are indicated by the points B2i (i = 1, ..4). In the middle unstable
part of the family, which is located between the points B22 and B23,
there are two intervals, 0.33 < e1 < 0.47 and 0.49 < 0.68, where the
periodic orbits correspond to planetary orbits that do not intersect
during one period. In figures 10b and 10d we present the angles ∆$
and M , respectively, along the family A2 of the asymmetric periodic
orbits. We remind that M is the mean anomaly of the second planet
P2 when the first one, P1, is at perihelion.
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7. Families of asymmetric periodic orbits, m1 <m2.
HD82943 (old values) mass ratio

As a typical example of asymmetric periodic orbits of a planetary
system with the mass of the inner planet smaller than the mass of
the outer planet, m1 < m2, we study the planetary system HD82943,
with the old masses. The elements of this system are (Israelinian et al.,
2001): m1 sin i = 0.88J, m2 sin i = 1.63J , a1 = 0.73AU, a2 = 1.16AU,
T1 = 221.6d, T2 = 444.6d, e1 = 0.54, e2 = 0.41 and the mass of the
sun is msun = 1.05 solar masses. The normalized masses that we used
in our computations are m0 = 0.9978, m1 = 0.0008, m2 = 0.0014.

Symmetric periodic orbits for this system have been computed by
Psychoyos and Hadjidemetriou (2005a). In this section we compute
families of asymmetric periodic orbits. The three symmetric families,
family 1, family 2 and family 3, also exist in this case, as in the case
m1 = m2, but now there is no an instability region on family 1 and
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Figure 12. System HD82943 form1 < m2. The variation of the angles ∆$ = $2−$1

and M (as in figures 7,10) for the indicated families A2 and A3.

consequently, we do not have a bifurcation of an asymmetric family A1

(see figures 6 and 9). There exist however in the present case,m1 < m2,
two families of asymmetric periodic orbits, family A2 and family A3,
that are independent of the symmetric families.

In figure 11 we present the above two families of asymmetric pe-
riodic orbits, in the e1 e2 space. The graph of the family A2 is quite
complicated and is similar to the previous cases studied (figures 6,9).
The planetary orbits, generally, intersect except for the segments that
correspond to the intervals 0.25 < e1 < 0.39 and 0.68 < e1 < 0.71
located between the critical orbits B22 and B23. The new family A3 is
described by very high values of the eccentricity e2 and a significant
portion of it is stable. For all periodic orbits of family A3 the planetary
orbits intersect.

In figure 12 we present the variation of the angle of apsides ∆$ and
the mean anomaly difference M along these two families. The family
A2 shows similar characteristics to those of the previous cases. Along
the family A3 the value of ∆$ and M tends to 180◦ as e1 → 1.

8. Stability analysis of the phase space regions near the
asymmetric families of the Io-Europa system.

The linear stability of the asymmetric families A1 and A2 of periodic
orbits for the mass ratio of Io-Europa is given in figure 6: Family A1 is
linearly stable, while family A2 has linearly stable and linearly unstable
sections. In order to study the nonlinear stability of the asymmetric
periodic orbits we change the asymmetry of the two planetary orbits,
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Figure 13. The Poincaré map (projection on the x2 ẋ2 plane) of the orbit O1 of
the family A1 in figure 6, for a fixed value ∆$ = 81◦, corresponding to the exact
periodic orbit, and a shift of M from its value M = 292◦ at the exact periodic orbit
to: (a) M = 302◦, (b) M = 307◦ and (c) M = 0◦. The panels under the Poincaré
maps give the variation of the eccentricities of P1 (solid line) and P2 (dashed line) in
time (t.u. denotes the time units, which result for the normalized system described
in Section 2.1).

keeping the same values for the semimajor axes and the eccentricities.
We use two types of perturbation: (a) We keep the angle ∆$ fixed,
equal to the value at exact periodicity and shift the position of P2 on
its orbit, from the position of exact periodicity at the moment when P1

is at perihelion. This means that we change the mean anomaly value
M , starting from the exact periodicity. (b) We keep the value of M
fixed, equal to the value M2 at the exact periodicity when M1 = 0, and
change the angle ∆$, starting from the exact periodicity. We remark
that this is not a complete exploration of the four-dimensional phase
space in the neighbourhood of a periodic orbit, but it is an indication
that stable librations do exist close to a linearly stable periodic orbit.

As we will see in the following, we have stable asymmetric librations
even in the case where the two planetary orbits intersect, for a region
of the phase space.

8.1. The family A1

As a typical example of an asymmetric periodic orbit on the family A1

of figure 6, we consider the orbit O1 which is linearly stable (figure 8,
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Figure 14. (a) The regions of the value of M of the orbit O1, corresponding to
different behaviour. The exact periodic motion is at M = 292◦ and is indicated by a
dot. (b) The regions of the value of ∆$, corresponding to different behaviour. The
exact periodic motion is at ∆$ = 81◦ and is indicated by a dot.

left column). The elements of this 2/1 resonant orbit are e1 = 0.30,
e2 = 0.29, ∆$ = 81◦ and M = −68◦.

Let us start first by keeping the angles of apsides fixed, equal to the
one corresponding to the exact periodic motion and vary the value of
M , starting from the exact periodic motion. We found that there are
three typical behaviours, plus the case of ejection (in a relatively short
time interval) of one planet from the system:

− For a small deviation of M , we have a libration with small ampli-
tude close to the exact periodic motion. At this point we remark
that to each asymmetric periodic orbit there corresponds its mirror
image, and we apply the same perturbation to the mirror image
periodic orbit (presented with fewer points). We have a new, dis-
tinct, libration, which is the mirror image of the former one. These
two mirror image librations are shown in figure 13a. The motion
is clearly on a torus. In figure 13d we present the corresponding
variation of the eccentricities. We can observe that when e1 in-
creases e2 decreases and vice versa. This is due to the conservation
of the angular momentum, obtained from the averaged system
(Michtchenko and Ferraz-Mello; 2001, Beaugé et al., 2003).

− For a larger deviation of M from the exact periodic motion, we
still have a regular, bounded, motion on a torus. The difference
from the previous case is that now the amplitude of the variation
is much larger, because the two distinct tori that we had in the
case of figure 13a merge into one large torus. This is shown in
figure 13b, and the variation of the eccentricities is shown in figure
13e.

− If the deviation of M from the exact periodic motion is still larger,
we have chaotic motion, which however is bounded for very long
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time intervals, at least up to 107 time units. This is shown in figure
13c and the corresponding variation of the eccentricities is shown
in figure 13f.

− We found that there exists a range of values of M for which the
motion is strongly chaotic and one of the planets escapes from the
system in a relatively short time interval.

In all cases, the variation of the semimajor axes is very small (except in
cases of ejection). All the above mentioned regions of ordered or chaotic
motion are summarized in figure 14a.

A similar behaviour exists if we keep M fixed, equal to the exact
periodic motion and vary ∆$. The four typical evolutions, which men-
tioned above, also appear in this case. The results are summarized in
figure 14b.

In both the above two perturbation cases, there is a rather compli-
cated change from one type of motion to another one. It is important
to note however, that close to the exact periodic motion there exists a
region in phase space where we have ordered motion with small varia-
tion of the orbital elements, appearing on the Poincaré map as motion
on a torus. Note that due to the 2/1 resonance there is a symmetry of
the behaviour close to the exact periodic motion, if M is changed by
180◦.

8.2. The family A2

As a typical example of an asymmetric periodic orbit on the family
A2 of figure 6, we consider the orbit O2 which is linearly stable (figure
8, middle column). The elements of this 2/1 resonant periodic orbit
are e1 = 0.30, e2 = 0.64, ∆$ = 86◦ and M = 173◦. Note that the
two planetary orbits intersect in this case. We made the same analysis
as that for the orbit O1. The three typical behaviours are shown in
figure 15. The regions in the range of values of M (for ∆$ fixed) and
the regions in the range of values of ∆$ (for M fixed) are shown in
figures 16a and 16b, respectively. Comparing with figure 14 we note
that we have in this case also ordered motion with small amplitude
of the orbital elements, close to the exact periodic motion, but for a
larger deviation we go directly to strongly chaotic motion resulting to
ejection of one planet.

We remark that the total stable region in phase space, where we
have bounded motion with a small variation of the orbital elements, is
considerable though the two planetary orbits intersect.
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Figure 15. Poincaré sections and the eccentricity evolution, as in figure 12, for the
orbit O2 of the family A2 in the Io-Europa system.
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Figure 16. (a) The regions of the value of M of the orbit O2, corresponding to
different behaviour. The exact periodic motion is at M = 173◦ and is indicated by a
dot. (b) The regions of the value of ∆$, corresponding to different behaviour. The
exact periodic motion is at ∆$ = 86◦

9. “Almost periodic” orbits and secondary resonances

The computation of periodic orbits is based on the satisfaction of the
periodicity conditions given in Section 2.1. In numerical manner the
periodicity conditions (a system of four equations) are satisfied up to
a prescribed accuracy ε. In our study we set ε = 10−13 (except for
some cases of highly eccentric or/and strongly unstable motion where
we set ε = 10−12). We observed that in many cases the convergence
of the associated numerical Newton-Raphson algorithm computation-
ally terminates before achieving the prescribed accuracy, because the
computed determinant of the system of equations is almost critical
(∼ 10−7). Finally, we obtain an orbit which satisfies the periodicity
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line). Ts is the “short period” of the orbit O (see the text) (c) The evolution of ∆$
along the orbit O. The evolution has a long period TL, which is about 106 time units
and is indicated by the vertical dashed lines.

conditions with accuracy ε′ of few orders greater than ε. Such orbits
are “almost periodic” orbits in the sense that their starting and ending
points in phase space are in distance ε′ ¿ 1. Furthermore we can
construct families of “almost periodic” orbits by continuation. It is not
in the scope of this paper to study in details the above mentioned orbits.
We restrict our discussion in describing their main characteristics and
claiming their importance for the phase space topology.

Indicative families of “almost periodic” orbits, one for each system
studied, are shown in figure 17a. In all these families the eccentricity
e1 of the inner planet passes through the value zero as we move along
the family. The projection of the orbit O on the plane of the rotating
variables x2 and y2 is shown in figure 17b. The orbit is presented for
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Figure 18. The Poincaré map (projection on the x2 ẋ2 plane) of the orbit O indi-
cated in figure 17a, for a fixed value ∆$ = 157◦, corresponding to the exact initial
conditions of O, and a shift of M from its initial value M = 144◦ to: (a) M = 144◦,
(b) M = 138◦ and (c) M = 130◦. The panels under the Poincaré maps show the
variation of the eccentricities, correspondingly.

two equal but distinct time spans, i.e. they correspond to different
initial time t0 and are of size ∆t = Ts, where Ts is the time span
between two successive intersections of the orbit with the Poincare
section (y2 = 0, ẏ2 > 0) and is called “short period”. In each time span
of “short period” the orbit looks like an asymmetric periodic orbit.
Integrating the orbit for a longer time interval we obtain a deformation
of the orbit with respect to its initial form, which takes place slowly in
time. The computations indicate that this slow deformation of the orbit
is also periodic and the orbit takes its original form after a “long period”
TL. This characteristic is shown in figure 17c, where the variation of
the angle ∆$ is presented.

The long periodicity of the above mentioned orbits is verified by
constructing the Poincaré sections. If we start with the exact initial
conditions of O, we obtain the smooth closed invariant curve shown
in Figure 18a, which takes long time to close and is symmetric with
respect to the axis ẋ2 = 0. We remind that two successive points of the
Poincaré map are very close to each other. The formed curve denotes
a two dimensional torus in the four dimensional phase space of the
Poincaré map. In order to study the stability of this low dimensional
torus we perform similar computations as that in the previous section.
Initially, the orbit O correspond to ∆$ = 157◦ and M = 144◦. A slight
shift of the position of P2 on its orbit to M = 138◦ results to motion
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on a torus, around the invariant curve of panel (a) of figure 18. This is
shown in panel (b). A larger shift of P2 to M = 130◦ results to chaotic
motion and ejection of planet P2 (figure 18c,f).

We may claim that the “almost periodic” orbits described above are
of a different kind of resonant orbits, called in the literature secondary
resonances. The phase space of the Poincaré map is four-dimensional
and in the regions of the phase space where we have ordered motion,
the motion takes place on a 2-torus (with actions J1, J2 and angles
θ1, θ2).This is the case close to the ”almost periodic” orbits mentioned
above. These orbits are represented as closed curves on a 2-torus, which
means that we have a resonance between the two angles θ1 and θ2,
θ̇1/θ̇2 = p/q, where p, q are integers. For this reason we called these
orbits secondary resonances, although we did not relate the angles θ1

and θ2 with the usual libration and circulation frequencies.
The “almost periodic” orbits are in fact periodic orbits of the aver-

aged Hamiltonian, and they have been proved to play an important
role on the stability and the long term evolution of an asteroid in
the asteroid belt (e.g. see Henrard et al., 1995; Hadjidemetriou and
Voyatzis, 2000). These resonances may play also an important role in
the stability of extrasolar planetary systems.

10. Discussion

All the results obtained in this paper refer to resonant motion at the 2/1
resonance, for planetary orbits in the same plane. Our computations
are based on the exact differential equations of the general planar three
body problem.

It is clear that the periodic orbits play a crucial role in detecting
the stable regions of the phase space. The numerical results indicate
that there is a large region around a linearly stable periodic orbit,
where we have stable motion, even in the case where the planetary
orbits intersect. A phase protection mechanism operates, due to the
resonance, so that the planets do not come close to each other, even in
this latter case.

The stability of the symmetric periodic orbits of HD82943 has been
studied extensively in previous papers of Hadjedemetriou and Psy-
choyos cited in the bibliography. In the present work the results about
the symmetric orbits of the Io-Europa system are given. There exist,
for this system, regions in phase space where stable motion exists,
where the elements of the planetary orbits undergo librations with
small amplitude. The symmetry in this case plays a stabilizing role,
and a deviation from symmetry destabilizes the system.
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In the present study we focus our attention mainly to stable asym-
metric librations. The “backbone” of the regions of the phase space
where we should expect asymmetric librations is provided by the fam-
ilies of asymmetric periodic orbits that were computed both for m1 ≤

m2 and for m1 > m2. Parts on these families are linearly stable and
the non linear analysis showed that close to the exact periodic motion
there exists a region of the phase space where bounded, asymmetric,
motion with small amplitude of the orbital elements exists. This means
that a real asymmetric planetary system can exist for a rather large set
of orbital elements.

We remark that in some regions of the phase space, i.e. for a set
of values of the orbital elements of the two planetary orbits, it is the
asymmetry that plays a stabilizing role, and the deviation from asym-
metry destabilizes the system. As a consequence, we should expect real
planetary systems with asymmetric librations.

The families of periodic orbits can be obtained by considering the
averaging method. This has been done by Beaugé et al. (2003). The
fixed points of the averaged Hamiltonian that they found correspond to
the asymmetric family A1 that we mention in sections 5 and 6 (figures
6 and 9). In the present paper we found also new asymmetric families
of periodic orbits.

The knowledge of the location of the resonant, periodic, librations
is important in the study of the migration of a planetary system. It is
widely accepted that the observed planetary systems were not formed
in their present configuration, but started with different elements and
migrated to their present situation by the action of dissipative forces.
Studies at the 2/1 resonance by Ferraz-Mello et al. (2003) and Lee
(2004), show that a planetary system under the action of dissipative
forces is trapped to an asymmetric (or symmetric) resonant periodic
motion which coincides with the family A1 that we found in this study.
Their study included several mass ratios. Additionally, the work of
Lee (2004) indicates the existence of periodic orbits as those of the
asymmetric family A2. For further information on how to reach stable,
resonant, configurations, the reader is referred to the work of Lee (2004)
and Ferraz-Mello et al. (2003).

Finally, we have shown the existence of a different kind of reso-
nant orbits, called “almost periodic” orbits. These orbits form families
by continuation and, at the regions where they are stable, they re-
veal regions of regular motion in phase space. We claim that they are
associated with secondary resonances.
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